Download Free Statistical Analysis Of Fmri Data Mit Press Book in PDF and EPUB Free Download. You can read online Statistical Analysis Of Fmri Data Mit Press and write the review.

An overview of statistical methods for analyzing data from fMRI experiments. Functional magnetic resonance imaging (fMRI), which allows researchers to observe neural activity in the human brain noninvasively, has revolutionized the scientific study of the mind. An fMRI experiment produces massive amounts of highly complex data; researchers face significant challenges in analyzing the data they collect. This book offers an overview of the most widely used statistical methods of analyzing fMRI data. Every step is covered, from preprocessing to advanced methods for assessing functional connectivity. The goal is not to describe which buttons to push in the popular software packages but to help readers understand the basic underlying logic, the assumptions, the strengths and weaknesses, and the appropriateness of each method. The book covers all of the important current topics in fMRI data analysis, including the relation of the fMRI BOLD (blood oxygen-level dependent) response to neural activation; basic analyses done in virtually every fMRI article--preprocessing, constructing statistical parametrical maps using the general linear model, solving the multiple comparison problem, and group analyses; the most popular methods for assessing functional connectivity--coherence analysis and Granger causality; two widely used multivariate approaches, principal components analysis and independent component analysis; and a brief survey of other current fMRI methods. The necessary mathematics is explained at a conceptual level, but in enough detail to allow mathematically sophisticated readers to gain more than a purely conceptual understanding. The book also includes short examples of Matlab code that implement many of the methods described; an appendix offers an introduction to basic Matlab matrix algebra commands (as well as a tutorial on matrix algebra). A second appendix introduces multivariate probability distributions.
A guide to all aspects of experimental design and data analysis for fMRI experiments, completely revised and updated for the second edition. Functional magnetic resonance imaging (fMRI), which allows researchers to observe neural activity in the human brain noninvasively, has revolutionized the scientific study of the mind. An fMRI experiment produces massive amounts of highly complex data for researchers to analyze. This book describes all aspects of experimental design and data analysis for fMRI experiments, covering every step—from preprocessing to advanced methods for assessing functional connectivity—as well as the most popular multivariate approaches. The goal is not to describe which buttons to push in the popular software packages but to help researchers understand the basic underlying logic, the assumptions, the strengths and weaknesses, and the appropriateness of each method. The field of fMRI research has advanced dramatically in recent years, in both methodology and technology, and this second edition has been completely revised and updated. Six new chapters cover experimental design, functional connectivity analysis through the methods of psychophysiological interactions and beta-series regression, decoding using multi-voxel pattern analysis, dynamic causal modeling, and representational similarity analysis. Other chapters offer new material on recently discovered problems related to head movements, the multivariate GLM, meta-analysis, and other topics. All complex derivations now appear at the end of the relevant chapter to improve readability. A new appendix describes how to build a design matrix with effect coding for group analysis. As in the first edition, MATLAB code is provided with which readers can implement many of the methods described.
The study of brain function is one of the most fascinating pursuits of m- ern science. Functional neuroimaging is an important component of much of the current research in cognitive, clinical, and social psychology. The exci- ment of studying the brain is recognized in both the popular press and the scienti?c community. In the pages of mainstream publications, including The New York Times and Wired, readers can learn about cutting-edge research into topics such as understanding how customers react to products and - vertisements (“If your brain has a ‘buy button,’ what pushes it?”, The New York Times,October19,2004),howviewersrespondtocampaignads(“Using M. R. I. ’s to see politics on the brain,” The New York Times, April 20, 2004; “This is your brain on Hillary: Political neuroscience hits new low,” Wired, November 12,2007),howmen and womenreactto sexualstimulation (“Brain scans arouse researchers,”Wired, April 19, 2004), distinguishing lies from the truth (“Duped,” The New Yorker, July 2, 2007; “Woman convicted of child abuse hopes fMRI can prove her innocence,” Wired, November 5, 2007), and even what separates “cool” people from “nerds” (“If you secretly like Michael Bolton, we’ll know,” Wired, October 2004). Reports on pathologies such as autism, in which neuroimaging plays a large role, are also common (for - stance, a Time magazine cover story from May 6, 2002, entitled “Inside the world of autism”).
Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Functional magnetic resonance imaging (fMRI) has become the most popular method for imaging brain function. Handbook of Functional MRI Data Analysis provides a comprehensive and practical introduction to the methods used for fMRI data analysis. Using minimal jargon, this book explains the concepts behind processing fMRI data, focusing on the techniques that are most commonly used in the field. This book provides background about the methods employed by common data analysis packages including FSL, SPM and AFNI. Some of the newest cutting-edge techniques, including pattern classification analysis, connectivity modeling and resting state network analysis, are also discussed. Readers of this book, whether newcomers to the field or experienced researchers, will obtain a deep and effective knowledge of how to employ fMRI analysis to ask scientific questions and become more sophisticated users of fMRI analysis software.
An overview of theoretical and computational approaches to neuroimaging.

Best Books