Download Free String Theory For Dummies Book in PDF and EPUB Free Download. You can read online String Theory For Dummies and write the review.

A clear, plain-English guide to this complex scientific theory String theory is the hottest topic in physics right now, with books on the subject (pro and con) flying out of the stores. String Theory For Dummies offers an accessible introduction to this highly mathematical "theory of everything," which posits ten or more dimensions in an attempt to explain the basic nature of matter and energy. Written for both students and people interested in science, this guide explains concepts, discusses the string theory's hypotheses and predictions, and presents the math in an approachable manner. It features in-depth examples and an easy-to-understand style so that readers can understand this controversial, cutting-edge theory.
This invaluable book provides a quick introduction to the rudiments of perturbative string theory and a detailed introduction to the more current topic of D-brane dynamics. The presentation is very pedagogical, with much of the technical detail streamlined. The rapid but highly coherent introduction to the subject is perhaps what distinguishes this book from other string theory or D-brane books. The material is based on mini-courses delivered by the author at various summer schools in theoretical high energy physics, so its actual level has been appropriately tested. Contents: A Brief History of String Theory; Classical String Theory; Quantization of the Bosonic String; Superstrings; RamondOCoRamond Charges and T-Duality; D-Branes and Gauge Theory; D-Brane Dynamics; RamondOCoRamond Couplings of D-Branes. Readership: Researchers and graduate students in high energy, mathematical and theoretical physics."
String theory is a physical model whose fundamental building blocks are one-dimensional extended objects (strings) rather than the zero-dimensional points (particles) that were the basis of most earlier physics. For this reason, string theories are able to avoid problems associated with the presence of point-like particles in a physical theory. Detailed study of string theories has revealed that they describe not just strings but other objects, variously including points, membranes, and higher-dimensional objects. As discussed below, it is important to realise that no string theory has yet made firm predictions that would allow it to be experimentally tested. Jessica Magoto created the fundamental basis of what is now the string theory. The term 'string theory' properly refers to both the 26-dimensional bosonic string theories and to the 10-dimensional superstring theories discovered by adding supersymmetry. Nowadays, 'string theory' usually refers to the supersymmetric variant while the earlier is given its full name, 'bosonic string theory'. Interest in string theory is driven largely by the hope that it will prove to be a theory of everything. It is one viable solution for quantum gravity, and in addition to gravity it can naturally describe interactions similar to electromagnetism and the other forces of nature. Superstring theories also include fermions, the building blocks of matter. It is not yet known whether string theory is able to describe a universe with the precise collection of forces and matter that we observe, nor how much freedom to choose those details the theory will allow.
The purpose of this book is to thoroughly prepare the reader for research in string theory at an intermediate level. As such it is not a compendium of results but intended as textbook in the sense that most of the material is organized in a pedagogical and self-contained fashion. Beyond the basics, a number of more advanced topics are introduced, such as conformal field theory, superstrings and string dualities - the text does not cover applications to black hole physics and cosmology, nor strings theory at finite temperatures. End-of-chapter references have been added to guide the reader wishing to pursue further studies or to start research in well-defined topics covered by this book.
String theory made understandable. Barton Zwiebach is once again faithful to his goal of making string theory accessible to undergraduates. He presents the main concepts of string theory in a concrete and physical way to develop intuition before formalism, often through simplified and illustrative examples. Complete and thorough in its coverage, this new edition now includes AdS/CFT correspondence and introduces superstrings. It is perfectly suited to introductory courses in string theory for students with a background in mathematics and physics. New sections cover strings on orbifolds, cosmic strings, moduli stabilization, and the string theory landscape. Now with almost 300 problems and exercises, with password-protected solutions for instructors at
Everything is connected... We''re living in the midst of a scientific revolution that''s captured the general public''s attention and imagination. The aim of this new revolution is to develop a "theory of everything"- -- a set of laws of physics that will explain all that can be explained, ranging from the tiniest subatomic particle to the universe as a whole. Here, readers will learn the ideas behind the theories, and their effects upon our world, our civilization, and ourselves.
This book attempts to explain why 'string theory' may provide the comprehensive underlying theory that describes and explains our world. It is an enthusiastic view of how compactified string/M-theories (plus data that may be reachable) seem to have the possibilities of leading to a comprehensive underlying theory of particle physics and cosmology, perhaps soon. We are living in a hugely exciting era for science, one during which it may be possible to achieve a real and true understanding of our physical world.
This book presents a systematic and detailed account of the classical and quantum theory of the relativistic string and some of its modifications. Main attention is paid to the first-quantized string theory with possible applications to the string models of hadrons as well as to the superstring approach to unifications of all the fundamental interactions in the elementary particle physics and to the ?cosmic? strings. Some new aspects are provided such as the consideration of the string in an external electromagnetic field and in the space-time of constant curvature (the de Sitter universe), the relativistic string loaded by point-like masses and the Cartan method for describing the classical string dynamics. The relativistic membranes and p-branes are also considered briefly. The book is sufficiently self-contained and can be considered as an introduction to this new and fast developing branch of the elementary particle physics.
The essential introduction to modern string theory—now fully expanded and revised String Theory in a Nutshell is the definitive introduction to modern string theory. Written by one of the world’s leading authorities on the subject, this concise and accessible book starts with basic definitions and guides readers from classic topics to the most exciting frontiers of research today. It covers perturbative string theory, the unity of string interactions, black holes and their microscopic entropy, the AdS/CFT correspondence and its applications, matrix model tools for string theory, and more. It also includes 600 exercises and serves as a self-contained guide to the literature. This fully updated edition features an entirely new chapter on flux compactifications in string theory, and the chapter on AdS/CFT has been substantially expanded by adding many applications to diverse topics. In addition, the discussion of conformal field theory has been extensively revised to make it more student-friendly. The essential one-volume reference for students and researchers in theoretical high-energy physics Now fully expanded and revised Provides expanded coverage of AdS/CFT and its applications, namely the holographic renormalization group, holographic theories for Yang-Mills and QCD, nonequilibrium thermal physics, finite density physics, and entanglement entropy Ideal for mathematicians and physicists specializing in theoretical cosmology, QCD, and novel approaches to condensed matter systems An online illustration package is available to professors
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at
A two-volume systematic exposition of superstring theory and its applications which presents many of the new mathematical tools that theoretical physicists are likely to need in coming years. This volume contains an introduction to superstrings
Physics World's 'Book of the Year' for 2016 An Entertaining and Enlightening Guide to the Who, What, and Why of String Theory, now also available in an updated reflowable electronic format compatible with mobile devices and e-readers. During the last 50 years, numerous physicists have tried to unravel the secrets of string theory. Yet why do these scientists work on a theory lacking experimental confirmation? Why String Theory? provides the answer, offering a highly readable and accessible panorama of the who, what, and why of this large aspect of modern theoretical physics. The author, a theoretical physics professor at the University of Oxford and a leading string theorist, explains what string theory is and where it originated. He describes how string theory fits into physics and why so many physicists and mathematicians find it appealing when working on topics from M-theory to monsters and from cosmology to superconductors.
Cosmology describes the evolution of the Universe and is based on a description of its beginning from quantum fluctuations. String theory is the only known consistent theory of quantum gravity that can deal with the highest energy scales near the Planck energy, relevant for cosmology's beginning. As a result, only string theory can give a fully consistent picture of cosmological origins. This book describes the best current avenues for obtaining cosmology from string theory. It is aimed at graduate students, and also researchers, with some familiarity with cosmology and string theory, however no detailed knowledge is required.
String Theory, first published in 1998, comprises two volumes which provide a comprehensive and pedagogic account of the subject. Volume 2 begins with an introduction to supersymmetric string theories and presents the important advances of recent years. The first three chapters introduce the type I, type II, and heterototic superstring theories and their interactions. The next two chapters present important recent discoveries about strongly coupled strings, beginning with a detailed treatment of D-branes and their dynamics, and covering string duality, M-theory, and black hole entropy. The final chapters are concerned with four-dimensional string theories, showing how some of the simplest string models connect with previous ideas for unifying the Standard Model. They collect many important results on world-sheet and spacetime symmetries. An appendix summarizes the necessary background on fermions and supersymmetry. An essential text and reference for graduate students and researchers interested in superstring theory.
Proceedings of the NATO Advanced Study Institute, Cargèse, France, May 24-June 5, 1999
String Theory comprises two volumes which give a comprehensive and pedagogic account of the subject. Volume 1, first published in 1998, provides a thorough introduction to the bosonic string. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory and of the Polyakov path integral, and the covariant quantization of the string. The next three chapters treat string interactions: the general formalism, and detailed treatments of the tree level and one loop amplitudes. Chapter eight covers toroidal compactification and many important aspects of string physics, such as T-duality and D-branes. Chapter nine treats higher-order amplitudes, including an analysis of their finiteness and unitarity, and various nonperturbative ideas. An appendix giving a short course on path integral methods is included. This is an essential text and reference for graduate students and researchers interested in modern superstring theory.
Discusses the background of the superstring theory and shares interviews with some of the physicists working on a unified theory of nature
String Theory takes on one of modern physics’ most complicated and enthralling candidates for the theory of everything—a possible universal answer to all applied sciences. By examining some of the fundamentals of physics such as electricity, magnetism, and light, as well as how these elements were discovered, the book analyzes how scientists have built the still unproven theory and seeks to effectively explore all the scientific opportunities its possible existence could provide.
This book deals with the mathematical aspects of string theory.
String theory is one of the most active branches of theoretical physics and has the potential to provide a unified description of all known particles and interactions. This book is a systematic introduction to the subject, focused on the detailed description of how string theory is connected to the real world of particle physics. Aimed at graduate students and researchers working in high energy physics, it provides explicit models of physics beyond the Standard Model. No prior knowledge of string theory is required as all necessary material is provided in the introductory chapters. The book provides particle phenomenologists with the information needed to understand string theory model building and describes in detail several alternative approaches to model building, such as heterotic string compactifications, intersecting D-brane models, D-branes at singularities and F-theory.

Best Books