Download Free Survival Analysis Using Sas A Practical Guide Second Edition Book in PDF and EPUB Free Download. You can read online Survival Analysis Using Sas A Practical Guide Second Edition and write the review.

Easy to read and comprehensive, Survival Analysis Using SAS: A Practical Guide, Second Edition, by Paul D. Allison, is an accessible, data-based introduction to methods of survival analysis. Researchers who want to analyze survival data with SAS will find just what they need with this fully updated new edition that incorporates the many enhancements in SAS procedures for survival analysis in SAS 9. Although the book assumes only a minimal knowledge of SAS, more experienced users will learn new techniques of data input and manipulation. Numerous examples of SAS code and output make this an eminently practical book, ensuring that even the uninitiated become sophisticated users of survival analysis. The main topics presented include censoring, survival curves, Kaplan-Meier estimation, accelerated failure time models, Cox regression models, and discrete-time analysis. Also included are topics not usually covered in survival analysis books, such as time-dependent covariates, competing risks, and repeated events. Survival Analysis Using SAS: A Practical Guide, Second Edition, has been thoroughly updated for SAS 9, and all figures are presented using ODS Graphics. This new edition also documents major enhancements to the STRATA statement in the LIFETEST procedure; includes a section on the PROBPLOT command, which offers graphical methods to evaluate the fit of each parametric regression model; introduces the new BAYES statement for both parametric and Cox models, which allows the user to do a Bayesian analysis using MCMC methods; demonstrates the use of the counting process syntax as an alternative method for handling time-dependent covariates; contains a section on cumulative incidence functions; and describes the use of the new GLIMMIX procedure to estimate random-effects models for discrete-time data. This book is part of the SAS Press program.
Survival analysis is a class of statistical methods for studying the occurrence and timing of events. These methods ar most often applied to the study of deaths. In fact, they were originally designed for that purpose, which explains the name survival analysis. That name is somewhat unfortunate, however, because it encourages a highly restricted view of the potential applications of these methods. Survival analysis is extremely useful for studying many different kinds of events in both the social and natural sciences, including the onset of disease, equipment failures, earthquakes, automobile accidents, stock market crahes, revoluations, job terminations, births, marriges, divorces, promotions, retirements and arrests. Because these methods have been adapted - and sometimes independently discovered - by researchers in several different fields, they also go by several different names: event history analysis (sociology), reliability analysis and failure time analysis (engineering), duration and transition analysis (u.a. developmental psychology, economics).
If you are a researcher or student with experience in multiple linear regression and want to learn about logistic regression, Paul Allison's Logistic Regression Using SAS: Theory and Application, Second Edition, is for you! Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Several real-world examples are included in full detail. This book also explains the differences and similarities among the many generalizations of the logistic regression model. The following topics are covered: binary logistic regression, logit analysis of contingency tables, multinomial logit analysis, ordered logit analysis, discrete-choice analysis, and Poisson regression. Other highlights include discussions on how to use the GENMOD procedure to do loglinear analysis and GEE estimation for longitudinal binary data. Only basic knowledge of the SAS DATA step is assumed. The second edition describes many new features of PROC LOGISTIC, including conditional logistic regression, exact logistic regression, generalized logit models, ROC curves, the ODDSRATIO statement (for analyzing interactions), and the EFFECTPLOT statement (for graphing nonlinear effects). Also new is coverage of PROC SURVEYLOGISTIC (for complex samples), PROC GLIMMIX (for generalized linear mixed models), PROC QLIM (for selection models and heterogeneous logit models), and PROC MDC (for advanced discrete choice models). This book is part of the SAS Press program.
New and extensively updated for SAS 9 and later, this work provides cutting-edge methods, specialized macros, and proven best bet procedures. The book also discusses the pitfalls and advantages of various methods, thereby helping readers to decide which is the most appropriate for their purposes. 644 pp. Pub. 7/11.