Download Free The Handbook Of Nanomedicine Book in PDF and EPUB Free Download. You can read online The Handbook Of Nanomedicine and write the review.

This handbook covers the broad scope of nanomedicine. Starting with the basics, the subject is developed to potential clinical applications, many of which are still at an experimental stage. The book features extensive coverage of nanodiagnostics and nanopharmaceuticals, which are two important components of nanomedicine. Written by a physician-scientist author who blends his clinical experience and scientific expertise in new technologies, this book provides a definitive account of nanomedicine. It offers more up-to-date and comprehensive coverage of nanomedicine than any other comparable work.
In the fast-developing field of nanomedicine, a broad variety of materials have been used for the development of advanced delivery systems for drugs, genes, and diagnostic agents. With the recent breakthroughs in the field, we are witnessing a new age of disease management, which is governed by precise regulation of dosage and delivery. This book presents the advances in the use of lipid-based and inorganic nanomaterials for medical imaging, diagnosis, theranostics, and drug delivery. The materials discussed include liposome-scaffold systems, elastic liposomes, targeted liposomes, solid lipid nanoparticles, lipoproteins, exosomes, porous inorganic nanomaterials, silica nanoparticles, and inorganic nanohybrids. The book provides all available information about them and describes in detail their advantages and disadvantages and the areas where they could be utilized successfully.
This handbook (55 chapters) provides a comprehensive roadmap of basic research in nanomedicine as well as clinical applications. However, unlike other texts in nanomedicine, it not only highlights current advances in diagnostics and therapeutics but also explores related issues like nomenclature, historical developments, regulatory aspects, nanosim
The enormous advances in nanomedicine in the past decade have necessitated a growing need for an authoritative and comprehensive reference source that can be relied upon by scientists, clinicians, students, and industry and policy makers alike. The Handbook of Clinical Nanomedicine: From Bench to Bedside is designed to offer a global perspective on the wonders of nanomedicine. The handbook aims to provide a broad survey of various interconnected topics pertaining to nanomedicine. It is intended to be a stand-alone, easily accessible volume that examines the entire "product wheel" from creation of nanomedical products to final market introduction, all accomplished in a user-friendly format. Specifically, everything from bio-nanomaterials and nanodevices from the R&D stage to patent protection, clinical regulatory aspects, and eventual commercialization is encompassed in this book. In addition to highlighting cutting-edge technologies, the book addresses critical topics such as ethics, safety and toxicity, environmental health, nanoeconomics, business strategy, licensing, intellectual property, FDA law, EPA law, and governmental policy issues. With contributions from international experts, the diverse team of editors has compiled a book that provides a unified perspective to these varied topics. While many books focus on nanomedicine, nanotechnology, or nanoscience, none provide the medical applications of nanotechnology with both a clinical and business angle. Furthermore, most of the currently available books on the market fail to highlight the truly global nature of nanomedicine.
In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and structures. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume provides an overview of the major categories of nanoparticles, including amorphous, magnetic, ferroelectric, and zinc oxide nanoparticles; helium nanodroplets; and silicon, tetrapod-shaped semiconductor, magnetic ion-doped semiconductor, and natural polysaccharide nanocrystals. It also describes their properties and interactions. In the group of chapters on nanofluids, the expert contributors discuss the stability of nanodispersions, liquid slip at the molecular scale, thermophysical properties, and heat transfer. They go on to examine the theory, self-assembly, and teleportation of quantum dots. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.
This book concentrates on the use of biomaterials in nanomedicine. The areas of focus include drug delivery by polymers, lipids, and carbohydrates for the delivery of small molecules, RNA interference, and proteins; the use of nano-proteins such as antibodies and peptides as targeting agents for therapeutics and diagnosis; the use of nanocarrier-based biomaterials for manipulation of stem cells; different aspects of toxicity of nanocarriers (the immune response, liver toxicity, and many more); and success stories of biomaterials that have reached the clinics. The book covers theoretical and experimental analysis of various biomaterials that are used in nanomedicine, research methods and preparation techniques, and several promising applications.

Best Books