Download Free Theory And Design Of Air Cushion Craft Book in PDF and EPUB Free Download. You can read online Theory And Design Of Air Cushion Craft and write the review.

This definitive text describes the theory and design both of Air Cushion Vehicles (ACV) and Surface Effect Ships (SES). It begins by introducing hovercraft types and their development and application throughout the world in the last three decades, before going on to discuss the theoretical aspects of ACV and SES craft covering their hovering performance, dynamic trim over calm water, resistance, stability, manoeuvrability, skirt configuration and analysis of forces acting on the skirts, ACV and SES seakeeping, and the methodology of scaling aerodynamic and hydrodynamic forces acting on the ACV/SES from model test data. The latter chapters describe a design methodology, including design criteria and standard methods for estimating craft performance, lift system design, skirt design, hull structure, propulsion systems and power unit selection. Much technical information, data, and references to further work on hovercraft and SES design is provided. The book will be a useful reference to engineers, technicians, teachers, students (both undergraduate and postgraduate), operators etc. who are involved in ACV/SES research, design, construction and operation. Guides the reader on how to perform machinery and systems selection within ACV and SES overall design For teachers, students (both at under- and post-graduate level), engineers and technicians involved in ACV/SES
High speed catamaran and multihull high speed marine vessel have become very popular in the last two decades. The catamaran has become the vessel of choice for the majority of high speed ferry operators worldwide. There have been significant advances in structural materials, and structural design has been combined with higher power density and fuel efficient engines to deliver ferries of increasing size. The multihull has proven itself to be a suitable configuration for active power projection across oceans as well as for coastal patrol and protection, operating at high speedd for insertion or retrieval with a low energy capability. At present there is no easily accessible material covering the combination of hydrodynamics, aerodynamics, and design issues including structures, powering and propulsion for these vehicles. Coverage in High Speed Catamarans and Multihulls includes an introduction to the history, evolution, and development of catamarans, followed by a theoretical calculation of wave resistance in shallow and deep water, as well as the drag components of the multihull. A discussion of vessel concept design describing design characteristics, empirical regression for determination of principal dimensions in preliminary design, general arrangement, and methods is also included. The book concludes with a discussion of experimental future vehicles currently in development including the small waterplane twin hull vessels, wave piercing catamarans, planing catamarans, tunnel planing catamarans and other multihull vessels.
The Maritime Engineering Reference Book is a one-stop source for engineers involved in marine engineering and naval architecture. In this essential reference, Anthony F. Molland has brought together the work of a number of the world's leading writers in the field to create an inclusive volume for a wide audience of marine engineers, naval architects and those involved in marine operations, insurance and other related fields. Coverage ranges from the basics to more advanced topics in ship design, construction and operation. All the key areas are covered, including ship flotation and stability, ship structures, propulsion, seakeeping and maneuvering. The marine environment and maritime safety are explored as well as new technologies, such as computer aided ship design and remotely operated vehicles (ROVs). Facts, figures and data from world-leading experts makes this an invaluable ready-reference for those involved in the field of maritime engineering. Professor A.F. Molland, BSc, MSc, PhD, CEng, FRINA. is Emeritus Professor of Ship Design at the University of Southampton, UK. He has lectured ship design and operation for many years. He has carried out extensive research and published widely on ship design and various aspects of ship hydrodynamics. * A comprehensive overview from best-selling authors including Bryan Barrass, Rawson and Tupper, and David Eyres * Covers basic and advanced material on marine engineering and Naval Architecture topics * Have key facts, figures and data to hand in one complete reference book
This revised edition of Taylor's classic work on the internal-combustion engineincorporates changes and additions in engine design and control that have been brought on by theworld petroleum crisis, the subsequent emphasis on fuel economy, and the legal restraints on airpollution.The fundamentals and the topical organization, however, remain the same. The analyticrather than merely descriptive treatment of actual engine cycles, the exhaustive studies of aircapacity, heat flow, friction, and the effects of cylinder size, and the emphasis on applicationhave been preserved. These are the basic qualities that have made Taylor's work indispensable tomore than one generation of engineers and designers of internal-combustion engines, as well as toteachers and graduate students in the fields of power, internal-combustion engineering, and generalmachine design.Charles Fayette Taylor is Professor of Automotive Engineering Emeritus at MIT. Hedirected the Sloan Automotive Laboratories at MIT from 1926 to 1960
Growing worldwide populations increasingly require faster, safer, and more efficient transportation systems. These needs have led to a renewed interest in high-speed guided ground transportation technology, inspired considerable research, and instigated the development of better analytical and experimental tools. A very significant body of knowledge currently exists, but has primarily remained scattered throughout the literature. Vehicle Dynamics consolidates information from a wide spectrum of sources in the area of guided ground transportation. Each chapter provides a concise, thorough statement of the fundamental theory, followed by illustrative worked examples and exercises. The author also includes a variety of unsolved problems designed to amplify and extend the theory and provide problem-solving experience. The subject of guided ground transportation is vast, but this book brings together the core topics, providing in-depth treatments of topics ranging from system classification, analysis, and response to lading dynamics and rail, air cushion, and maglev systems. In doing so, Vehicle Dynamics offers a singular opportunity for readers to build the solid background needed for solving practical vehicle dynamics problems or pursuing more advanced or specialized studies.

Best Books